Analyzing Parallel Computing

Once again we will use image lab, this time to review Parallel Computing.

  • Change baseWidth in this line in code to increase computation requirements:def process_image(image, baseWidth=512): For instance 320, 512, 1024, 2048, 4096.- Compare Sequential and Parallel computing code and time to achieve outputs
from IPython.display import HTML, display
from pathlib import Path  # https://medium.com/@ageitgey/python-3-quick-tip-the-easy-way-to-deal-with-file-paths-on-windows-mac-and-linux-11a072b58d5f
from PIL import Image as pilImage # as PIL Image is used to avoid conflicts
from io import BytesIO
import base64
import numpy as np


# prepares a series of images
def image_data(path=Path("images/"), images=None):  # path of static images is defaulted
    if images is None:  # default image
        images = [
            {'source': "Internet", 'label': "Green Square", 'file': "green-square-16.png"},
            {'source': "Peter Carolin", 'label': "Clouds Impression", 'file': "clouds-impression.png"},
            {'source': "Peter Carolin", 'label': "Lassen Volcano", 'file': "lassen-volcano.jpg"}
        ]
    for image in images:
        # File to open
        image['filename'] = path / image['file']  # file with path
    return images

# Scale to baseWidth
def scale_image(img, baseWidth):
    scalePercent = (baseWidth/float(img.size[0]))
    scaleHeight = int((float(img.size[1])*float(scalePercent)))
    scale = (baseWidth, scaleHeight)
    return img.resize(scale)

# PIL image converted to base64
def image_to_base64(img, format):
    with BytesIO() as buffer:
        img.save(buffer, format)
        return base64.b64encode(buffer.getvalue()).decode()
    
# Convert pixels to Grey Scale
def grey_pixel(pixel):
    average = (pixel[0] + pixel[1] + pixel[2]) // 3  # average pixel values and use // for integer division
    if len(pixel) > 3:
        return( (average, average, average, pixel[3]) ) # PNG format
    else:
        return( (average, average, average) )
    
# Convert pixels to Red Scale
def red_pixel(pixel):
    if len(pixel) > 3:
        return( (pixel[0], 0, 0, pixel[3]) ) # PNG format
    else:
        return( (pixel[0], 0, 0) )
    
# Convert pixels to Red Scale
def green_pixel(pixel):
    if len(pixel) > 3:
        return( (0, pixel[1], 0, pixel[3]) ) # PNG format
    else:
        return( (0, pixel[1], 0) )
    
# Convert pixels to Red Scale
def blue_pixel(pixel):
    if len(pixel) > 3:
        return( (0, 0, pixel[2], pixel[3]) ) # PNG format
    else:
        return( (0, 0, pixel[2]) )
        
# Set Properties of Image, Scale, and convert to Base64
def image_management(image, baseWidth):  # path of static images is defaulted        
    # Image open return PIL image object
    img = pilImage.open(image['filename'])
    
    # Python Image Library operations
    image['format'] = img.format
    image['mode'] = img.mode
    image['size'] = img.size
    # Scale the Image
    img = scale_image(img, baseWidth)
    image['pil'] = img
    image['scaled_size'] = img.size
    image['numpy'] = np.array(img.getdata())
    # Scaled HTML
    image['html'] = '<img src="data:image/png;base64,%s">' % image_to_base64(image['pil'], image['format'])
    
    # Grey HTML
    # each pixel in numpy array is turned to grey 
    # then resulting list, using List Comprehension, is put back into img    
    img.putdata([grey_pixel(pixel) for pixel in image['numpy']])
    image['html_grey'] =  '<img src="data:image/png;base64,%s">' % image_to_base64(img, image['format'])
    
    # Red HTML
    img.putdata([red_pixel(pixel) for pixel in image['numpy']])
    image['html_red'] =  '<img src="data:image/png;base64,%s">' % image_to_base64(img, image['format'])
    
    # Green HTML
    img.putdata([green_pixel(pixel) for pixel in image['numpy']])
    image['html_green'] =  '<img src="data:image/png;base64,%s">' % image_to_base64(img, image['format'])
    
    # Blue HTML
    img.putdata([blue_pixel(pixel) for pixel in image['numpy']])
    image['html_blue'] =  '<img src="data:image/png;base64,%s">' % image_to_base64(img, image['format'])
    
    
def process_image(image, baseWidth=320):
    image_management(image, baseWidth)
    print("---- meta data -----")
    print(image['label'])
    print(image['source'])
    print(image['format'])
    print(image['mode'])
    print("Original size: ", image['size'])
    print("Scaled size: ", image['scaled_size'])
    
    print("-- images --")
    display(HTML(image['html'])) 
    display(HTML(image['html_grey'])) 
    display(HTML(image['html_red'])) 
    display(HTML(image['html_green'])) 
    display(HTML(image['html_blue'])) 

Sequential Processing

The for loop iterates over the list of images and processes them one at a time, in order.

if __name__ == "__main__":
    # setup default images
    images = image_data()

    # Sequential Processing    
    for image in images:
        process_image(image)
        
    print()
---- meta data -----
Green Square
Internet
PNG
RGBA
Original size:  (16, 16)
Scaled size:  (320, 320)
-- images --
---- meta data -----
Clouds Impression
Peter Carolin
PNG
RGBA
Original size:  (320, 234)
Scaled size:  (320, 234)
-- images --
---- meta data -----
Lassen Volcano
Peter Carolin
JPEG
RGB
Original size:  (2792, 2094)
Scaled size:  (320, 240)
-- images --

Parallel Computing

In parallel or concurrent mode, the ThreadPoolExecutor is used to submit each image to a separate worker thread, allowing multiple images to be processed simultaneously. Multithreading allows multiple concurrent tasks of a process at the same time. The executor.map() method is used to apply the process_image function to each image in the images list.

  • The order in which the images are processed is not guaranteed, as threads are performed simultaneously.
import concurrent.futures

# Jupyter Notebook Visualization of Images
if __name__ == "__main__":
    # setup default images
    images = image_data()
    
    # Parallel Processsing
    # executor allocates threads, it considers core execution capability of machine
    with concurrent.futures.ThreadPoolExecutor() as executor:
        executor.map(process_image, images)  # order is not predictable
        
    print()
---- meta data -----
Green Square
Internet
PNG
RGBA
Original size:  (16, 16)
Scaled size:  (320, 320)
-- images --
---- meta data -----
Clouds Impression
Peter Carolin
PNG
RGBA
Original size:  (320, 234)
Scaled size:  (320, 234)
-- images --
---- meta data -----
Lassen Volcano
Peter Carolin
JPEG
RGB
Original size:  (2792, 2094)
Scaled size:  (320, 240)
-- images --

Observing Parallel Computing and Threads

You can observe Processes, CPU Percentage, and Threads with Tools on your machine. Common tools to monitor performance are Activity Monitor on MacOS or Task Manager on Windows.

  • This example is using top launched in VSCode Terminal. (mac)
  • Try top -H for linux.
    • PID is Process ID.
    • COMMAND is task running on machine. Python is activated when running this Jupyter notebook.
    • #TH is number of threads. This increases from 15/1 to 18/1 on my machine when running python parallel computing example.

Hacks

AP Classroom. Provide answers and thoughts on theoritical question form college board Video in section 4.3. They start at about the 9 minute mark.

  • Example 1
  • Example 2

Data Structures. Build a List Comprehension example

  • list = [calc(item) for item in items]

AP Classroom

  • Example 1: The minimum amount of time for all three processes to run would be 50 seconds. The longest process does take 50 seconds, and we can assign that task to one processor, while the other processor does the lesser tasks (ones that take 10 and 30 seconds).
  • Example 2: The time difference for execution should be 25 seconds. When running in parallel, the minimum execution time is 45 seconds. When running the process on an individual processor, the minimum time taken is 70 seconds. 70-45 = 25.
  • Example 3: In order to get the fastest time to run both processes, it is best to assign A and B to one processor, and assign C and D to another one. Since both process pairs have a total time of 50 seconds, running those in parallel would reduce the time significantly.
teams = ["Padres", "Dodgers", "Yankees", "Red Sox", "White Sox", "Mariners"]

newteam = [x for x in teams]
teamlist = [x for x in teams if x != "Padres"]
newlist = [x for x in teams if teams.index(x) > 2]

print(newteam)
print(teamlist)
print(newlist)
['Padres', 'Dodgers', 'Yankees', 'Red Sox', 'White Sox', 'Mariners']
['Dodgers', 'Yankees', 'Red Sox', 'White Sox', 'Mariners']
['Red Sox', 'White Sox', 'Mariners']
stats = {
"Manny Machado": .298,
"Xander Bogaerts": .307,
"Juan Soto": .246,
"Fernando Tatis Jr.": .281,
"Jake Cronenworth": .240,
"Ha-Seong Kim": .251,
"Trent Grisham": .182,
"Matt Carpenter": .305
}
newstat = [x for x in stats]

lists = [x for x in stats if stats [x] < .200]

print(newstat)
print(lists)
['Manny Machado', 'Xander Bogaerts', 'Juan Soto', 'Fernando Tatis Jr.', 'Jake Cronenworth', 'Ha-Seong Kim', 'Trent Grisham', 'Matt Carpenter']
['Trent Grisham']